Transport, food insecurity and food aid in sub-Saharan Africa

Gordon H. Pirie

Department of Geography, University of the Witwatersrand, Johannesburg 2050, South Africa

The contribution made by transport projects to long-term regional economic change obscures the role of transport in the daily struggle for survival in places afflicted by food insecurity. In sub-Saharan Africa, limited infrastructure and transport service has occasionally disrupted food production and circulation. During the widespread food crises of the past decade, land, sea and air transport have been used more constructively to distribute food aid. An empirical review of the contradictory relations between transport and food insecurity precedes discussion of the logistics and potential impact of emergency food aid transport in north-eastern and southern Africa in the 1980s and 1990s.

Keywords: Transport; food aid; sub-Saharan Africa

At the national and regional scales, the link between transport and socio-economic conditions is commonly viewed in grandiose terms. It is the developmental capacity and effect of transport that is almost always the focus of attention: improved accessibility and mobility are regarded as the keys to enhanced agricultural, industrial and service-sector performance. Transport is seen ambitiously from the point of view of enhancing production, consumption and trade in the long term. It is rarely considered as an element in daily survival.

Outside the urban realm, the predilection to analyse transport in developmental rather than survivalist terms reflects an obsession with glamorous and capital-intensive transport projects as symbols and tools of modernization. In the colonial era, the dredging of harbours, construction of breakwaters and quays, and building of railways were indeed crucial elements of change. Similarly, in the post-colonial period, airports and national airlines and shipping fleets were established as instruments of modernity and independence. These prominent facets of transportation have commanded attention out of all proportion to the dull, but important contribution that transport makes to the daily rhythms of socio-economic units such as the household.

The dire circumstances of drought-ravaged sub-Saharan Africa in the 1990s underscore the fundamental way in which transport impinges on the daily struggle which millions of people have to obtain food, water and fuelwood. In a region of widespread and chronic poverty and food shortages, transport is a basic ingredient of survival for peasant farmers and refugees who have to cope with civil strife and starvation. An estimated 10 million Africans have resettled themselves in their own countries, while 7.5 million have walked into exile. The latter account for approximately one-third of the world's total refugee population (World Bank, 1989). In the last decade of this century, the lifeline of survival for 40 million sub-Saharan African people will be the arrival of emergency food supplies by road, rail and air.

Transport and food insecurity

The humanitarian role that transport may play in alleviating food insecurity, and the ensuing hunger, malnutrition or mass starvation, has an historical context in which transport has not always been benign. On the contrary, transport has at times been partly responsible for deteriorating food security. Most obviously, inadequate transport has sometimes crippled food circulation. This is particularly serious during times of climatic hardship when regional self-sufficiency declines, and consumers face food shortages and price increases. Conversely, inadequate transport has delayed and/or curtailed the distribution of materials to farmers, and has inflated the price of these commodities. Inadequate transport has also contributed indirectly to food insecurity through its effect on the production and sale of non-food items: failure to market a surplus means reduced income and reduced food purchases. The two effects may occur simultaneously. In 1988 in different regions of Tanzania, for example, half the cotton harvest, 80% of the rice paddy, and half of all seeds, fertilizer and herbicides were lost due to inadequate rural transport (Riverson et al., 1991).
The source of the transport limitations that contribute to impoverishment and hunger are diverse. In most sub-Saharan countries, skeletal transport networks mean that many food markets are inaccessible to food producers; small-scale farmers with meagre quantities of surplus food find it difficult to participate in the market economy. In southern Africa, landlockedness, and dependence on lengthy, circuitous road and rail routes through maritime countries, has raised the cost of food imports. Mismanagement of transport has also occurred in some instances. In Zambia, for example, the good 1985 harvest was practically ruined because the crop could not be taken to storage before the rainy season began: a shortage of fuel and spares paralysed trucks, and inadequate road maintenance made deliveries slow and treacherous (Good, 1988). Similarly, in one region of Zimbabwe in 1990, the serviceability of 140 out of the 368 government-owned trucks needed to move food aid obliged recipients to organize their own transport (Sachikonye, 1992). In that instance, as in others, the economic structural adjustment programmes imposed on many African countries in the 1990s may be responsible for deteriorating transport services: governments are obliged to shed unremunerative operations and to withdraw subsidies.

Even before the 1960s, when severe food shortages in sub-Saharan Africa were still unusual, transport was not blameless for calorie deprivation and seasonal or perennial famine. The introduction of mechanical transport was one force that disrupted existing channels of food production and distribution. For instance, the completion of a railway to northern Nigeria in 1912 stimulated peanut production for export at the expense of food production (Rau, 1991). Further south, food security was shaken by the building of railways whose geographical layout undermined peasant grain production and marketing, and allowed importation of cheap grains (Pirie, 1982; Palmer, 1983). The fiasco of the east African groundnut scheme in the 1940s was hastened by rail and port incapacity (Hogendornd and Scott, 1983). More recent experience in the sub-continent shows that the retention of outdated forms of transport (especially the slow, limited capacity head- and back-loading), the unavailability of motorized transport for hire and the failure to maintain roads in an adequate condition, has restricted cash crop sales and food circulation. Even food production has been affected adversely by the amounts of household time and energy that must be spent in off- and on-road transport (World Bank, 1989).

Assessment of the contribution that road rehabilitation and construction might make to improved standards of living (including enhanced food production and circulation, and easier access to health care and education) in sub-Saharan Africa was the subject of several investigations conducted during the decade that the United Nations marked as the Transport and Communications Decade in Africa (1978-88) (eg Howe, 1984; Airey, 1985; Obut, 1986; Amadi, 1988; Wagner, 1990; Riverson et al, 1991). In most cases, overcoming the isolation of small farmers is the decisive criterion: many live more than a day’s travel from an all-weather road, and face high transport costs for agricultural supplies and products. The execrable condition of many rural roads is a great problem. Among the causes of deterioration is underpricing, the failure to develop a professional corps of road managers and technicians, and poor maintenance of road construction equipment. In West Africa, this equipment typically operates at between only 30% and 60% of capacity. The estimated cost of overcoming the backlog of road maintenance in sub-Saharan Africa is US$5000 million. An additional US$700 million is needed annually in the 1990s to avoid further deterioration (World Bank, 1989).

The urgency of road improvement programmes to enhance the quality of life in sub-Saharan Africa has been given an extra boost by the prospect that road construction and repair can help to alleviate hunger and poverty directly by providing unskilled work opportunities. From the point of view of productivity, labour-intensive road construction is useful for improving diets and reducing absenteeism. It also trims building and maintenance costs, and thereby helps staunch expenditure of scarce foreign exchange on heavy equipment. Several variants of food-for-roadwork programmes have been implemented in Botswana, Ghana, Kenya, Lesotho, Malawi and Mozambique (Gallagher, 1988; Pickstock, 1988; McCutcheon, 1989; Weathers, 1989; World Bank, 1989).

Transport and food aid

The blame that rests with transport for aggravating and/or perpetuating food shortages in contemporary sub-Saharan Africa is of less immediate concern than using transport as a carrier of relief food supplies. Yet the urgency of combating hunger should not be allowed to compromise transport arrangements: national governments and relief agencies are keenly aware that emergency plans should be married to longer term goals for transport development. Transport bodies that are created to smooth the flow of food aid should be used as a training ground for local engineers, technicians and managers, and infrastructure should be capable of being used to transport other freight if and when food aid is no longer needed. Globally, the funding and procurement of food aid engages several international agencies (Raikes, 1988; Talbot, 1990). The world’s major multilateral agency for the distribution of food aid is the World Food Program (WFP). Based in Rome, the organization is essentially the logistics arm of the United Nations. It works as ‘a shipping company, a trucking
company, forwarding agent and risk manager' (World Food Program, 1991, p. 44; Mathsson, 1988). In existence since 1961, the WFP has handled increasing quantities of food on behalf of the United Nations, and other bilateral and NGO donors. The volume reached a record 4.88 million tons in 1991. In that year, transport-related expenditure was US$387 million, of which $155 million was paid to developing countries for overland transport, and $21 million for shipping. Up to 50 vessels chartered by the WFP are afloat at any one time (World Food Program, 1992, pp. 23-34). These ships constitute a 'permanent floating reservoir of food aid' that has been diverted on occasion to meet particularly pressing needs (World Food Program, 1990, p. 56). Airlifting food supplies has generally been a strategy of last resort, but by 1991 the volume reached 54,000 tons. Approximately 42% of the expenditure of US$23 million was on aircraft hired from developing countries (World Food Program, 1992, p. 47).

The modus operandi of the WFP is that recipient countries are responsible for arranging prompt berthing and rapid discharge of vessels, and must pay any demurrage that is incurred. Vessel owners are entitled to compensation if there is any delay in discharge. To expedite food deliveries, the WFP can use funds from its regular resources against later reimbursements from donors. The delivery and clearance of relief commodities in recipient countries is facilitated by customized WFP documentation known as the ‘worldfood waybill’. In the case of food aid to the poorest countries, the WFP subsidizes land transport.

For at least the last decade, the major theatre of WFP activities has been sub-Saharan Africa. In the Sahel and southern Africa especially, countries experienced economic decline throughout the 1980s. Agricultural output barely grew, industrial output declined, export performance was poor, debt climbed, per capita incomes fell, social indicators deteriorated, and public institutions reached a point of collapse. Compounding these difficulties, the population growth rate was the fastest anywhere, at any time, in human history. High maternal and infant mortality rates counteracted demographic growth, however, as did deaths and dislocations due to calamitous drought and war (United Nations, 1990, 1992). The resulting food insecurity in sub-Saharan Africa was relieved during the 1980s by an average annual amount of 3.17 million tons of cereal aid (World Bank, 1991).

North-eastern Africa
The first major food assistance projects in Africa occurred during the Ethiopian famine of 1984–86 when 2 million tons were distributed by road and air. The ‘logistical nightmare’ (Jansson et al., 1987) was the source of several invaluable lessons, not least about how bottlenecks at ports and in the interior could hamper the movement of aid. At times food piled up on the docks, or in ships waiting to be unloaded for lack of sufficient trucks, fuel and spare parts (Scott, 1987). Food aid was also stranded at the coast because of a decrepit and/or damaged railway system. For example, the capacity of one unidentified railway declined from 3 million tons per annum to 800,000 tons per annum over two decades (Morse, 1987). The decline in sub-continental railways, once the backbone of the regional transport system, is a major obstacle to food aid transport. Although they would be ideal for bulk grain transfers overland, many railways cannot fulfil that role: they have suffered acutely from declining absolute and relative shares of traffic, high staff costs, low productivity, poor serviceability of locomotive and rolling stock, and from their vulnerability to banditry (World Bank, 1989).

Despite difficulties and disappointments, and despite the argument that money spent on transport might be better spent on assisting long-term food production (eg Scott, 1987), the ferrying of food aid and (fresh drinking water) in Ethiopia and the Sudan has persisted. Most transport has been overland. During 1987 the WFP truck fleet carried approximately 230,000 tons of cargo over 10 million km (World Food Program, 1987, p. 46). Operating 340 heavy duty vehicles from five bases, in 1989 the WFP transport operation delivered the millionth ton since it began in 1986 (World Food Program, 1990, p. 57). In 1991 the WFP contracted for 100 trucks from Kenya and Jordan to help transport food from Djibouti and Assab (World Food Program, 1992, p. 47).

Increasingly, as the seriousness of the famine has escalated, as relief supplies have become more urgent, and as the logistics of overland food distribution have become more difficult, the WFP has resorted to flying food aid direct to places most in need. In 1990 an air bridge from the Ethiopian port town of Assab transferred 38,000 tons of food aid to Asmara on almost 2,000 flights (World Food Program, 1991, p. 46). The following year almost 30,000 tons of food were flown into Ethiopia and 6,500 tons to Sudan. At the height of the airlift and airdrop operation, six chartered aircraft, each of 16 tons capacity, made a total of 30 airdrops a day at 12 locations inside Ethiopia (World Food Program, 1992, p. 44). Emergency airlifts continue, supplemented by direct assistance from foreign governments such as that of the USA.

Transport aid from the WFP has not been devoted solely to the carriage of food. In Ethiopia, the organization became involved in infrastructural activities that would ease port congestion and expedite the transport of aid. In 1991 technical assistance was given to improve the management of the Red Sea ports at Assab and Massawa. In addition, new equipment and spare parts were purchased, together with a tugboat, a pilot boat and
Damage and destruction have interrupted the transport of aid, but have not ended it. Presaging the more anarchical looting of Somali relief convoys in August 1990, five years earlier in Ethiopia 16 WFP trucks carrying 530 tons of food aid were attacked and destroyed by the Eritrean People's Liberation Front (World Food Program Journal, 1987, vol 4, p. 21). In 1988, in neighbouring Sudan, 11 truckers and a WFP consultant were killed (World Food Program, 1990, p. 54). In an effort to protect its workers and get food to its destination, the WFP established the principle of 'corridors of tranquillity' which gave the organization the capability to deliver food across battle lines (World Food Program Journal, 1989 (10), pp. 9–16; World Food Program, 1991, p. 44). Airlifts have also been subject to disruption: adverse weather took its toll of one plane and its crew of four; a landmine at one airstrip damaged another plane (World Food Program, 1992, p. 45).

Regrettably, the north African experience is that, even during a food aid programme, relief transport may be part of the problem rather than part of the solution. During the mid-1980s food shortage in the Sudan, for example, the urgency of food distribution was exploited for political purposes: railway unions and management refused to transport food aid in the hope of toppling an antagonistic regime. In other instances, private lorry contractors seized the opportunity to profit from short-distance food transport at the expense of outlying areas; the relief efforts of non-governmental organizations were handicapped by one foreign agency's insistence on using particular transport organizations; trucks ordered by the United Nations took as long as 12 months to be brought into service; lorries used by relief agencies for food distribution were requisitioned to move people to resettlement camps (Curtis et al., 1988).

Southern Africa

Food aid programmes similar to those in the Horn of Africa have been operated in southern Africa since the late 1980s. During the last four months of 1987, the WFP coordinated the transport of 25 000 tons of maize from Zimbabwe to Malawi for drought relief. Road convoys through turbulent Tete province in Mozambique (Figure 1) were accompanied by military escort (World Food Program, 1987, p. 47). The next year, in its largest ever overland operation, the WFP moved 70 000 tons of maize by truck and rail from Zimbabwe to Malawi and Mozambique (Mathisson, 1989). In 1990, 43 000 tons of maize were railed from Zimbabwe to Mozambique. Simultaneously, 900 000 tons of maize were trucked by road from Zambia and Zimbabwe to Malawi. The 4500 loads saved many lives in one of Africa's most densely populated countries which, by then, was also saddled with one of the world's largest refugee populations (World Food Program, 1990, p. 57). Airlifts have not been necessary on a scale comparable to those in north-east Africa: a modest quantity of 1200 tons of food was flown into embattled Angola in 1991 (World Food Program, 1992, p. 45).

The role of the WFP in Mozambique extended beyond delivery of food aid to the management and provision of transport facilities. For seven years, the organization managed a coastal shipping service until it was taken over by the government in 1990. Supply of ship-to-shore barges, railway equipment, food for harbour workers, and the secondment of logistics specialists, were also part of the aid package (World Food Program, 1988, pp. 51–52). Aid needs are without limit, however. A recent review calls for 94 additional trucks, 19 tractor-trailers and a boat. Another urgent requirement is the rehabilitation of small ports which are presently confined to daylight working at high tide owing to the poor channel passage markers. At Maputo, the principal port, security needs tightening to minimize food losses. Sabotage of power supplies in the port also needs to be prevented since it slows food transshipment and incurs unaffordable demurrage penalties. Civil war has disrupted the transport of food aid severely, to the point that in some places aircraft are the only safe means of transport. During 1989, 37 trucks were lost in ambushes. Military convoys helped to deter attacks, but only at the expense of retarding deliveries and turnaround (United Nations, 1990). Over 60% of deliveries to targeted beneficiaries required armed convoys. The risks and upheavals continue. In April 1992, three out of six relief convoys in one district were attacked or looted (United Nations, 1992). After similar disruption in Angola in 1990, the UN brokered an agreement between warring factions to enable emergency food deliveries throughout the territory (World Food Program, 1991, p. 46).

In the early 1990s, the Global Information and Early Warning System of the United Nations Food and Agriculture Organization (FAO) predicted an unprecedented food emergency in southern Africa. Aggravated by the El Nino phenomenon, the drought was forecast to cause disastrous harvests of maize and sorghum, poor pasture and deepening poverty. The dismal spectacle was compounded by the prospect of continued armed conflict, and the disruption of food markets and farm supplies. Cereal production in South Africa was expected to be one-third of normal, necessitating the import of up to 4.5 million tons in 1992–93. In six other southern African countries grain production was anticipated to be 40% of normal. Zimbabwe was reckoned to need 2 million tons of imported supplies. Zambia 900 000 tons, and Malawi 800 000 tons. In five countries, the quantity of food imports for the 1992–93 marketing year was more than double the usual amount (World Bank, 1991). Facing a colossal...
regional food deficit, no southern African countries would be able to help their neighbours, unlike in the past.

In these dire circumstances, early in 1992 the FAO, the WFP and the Southern African Development Co-ordination Conference's (SADCC) Early Warning Units assessed regional cereal harvests, imports, food aid requirements and distribution logistics. Besides an appeal for emergency food aid, the practical outcome was the establishment of a Regional Logistics Advisory Centre in Harare, and a Grain Operations Control Centre in Johannesburg. Their principal tasks are to oversee the routing, docking and unloading of grain shipments, to expedite transshipment and to synchronize the arrival, loading and departure of grain trains from harbours. During these intermodal operations it is imperative to avoid losing or contaminating grain, and to prevent disruption to other traffic, some of which might be carrying locally produced food, as happened in another aid project (Morse, 1987). The requisite computer monitoring and scheduling expertise for the mammoth southern African food aid project was drawn from the Kuwait Emergency Recovery Program. The grain train project began in April 1992, and is scheduled to continue until April 1993 by which time it is hoped rain will fall again as the El Nino effect decays.

The choice of Johannesburg as an operations centre for the 1992-93 southern African food aid programme was strategic for, among the regional ports and railways, those in South Africa have the greatest capacity and are best managed (Fair and Jones, 1991). The country's railway lines and ports are also least subject to guerilla sabotage. Even so, the challenge of coping with a revised estimate of 11.9 million tons of imported grain is considerable. Normally, South Africa imports approximately 2 million tons of food each year, but is now called upon to dock, unload and rail emergency supplies of six times that amount. What is most unusual, however, is the urgency of transport, and the care...
that must be taken in handling. The sheer volumes of traffic are not daunting: the country's railway organization transports and transships approximately 170 million tons of freight each year, and the net effect of the emergency grain transport is a small percentage traffic increase that is easily absorbed by a vast organization in recessionary times.

More remarkable than the volumes of food grain that will transit through South Africa is the political reversal that has made it possible to give the country a high profile in massive international food aid transport at the moment that the SADCC states lost their collective food self-sufficiency. Twelve years after the establishment in 1980 of the SADCC (which was designed to end the reliance of majority-ruled southern African states – excluding Namibia until 1990 – on the port and rail services run by the neighbouring white minority government), covert food shipments using South African transport services have become a thing of the past. The dismantling of statutory apartheid in the early 1990s, and progress toward a negotiated political settlement between former rivals in the Republic, meant that inter-regional transport could resume officially (Pirie, 1991). Normalization was not always immediate. In April 1992, for example, the Zimbabwean cabinet vetoed a meeting of southern African states to coordinate the distribution of grain, although within weeks the Transport Minister was negotiating openly with his South African counterpart (Economist Intelligence Unit, Zimbabwe and Malawi Country Reports, No 3, 1992, p. 9).

Although the new political acceptability of South Africa is important to its involvement in regional food aid transport, the principal effect is to legitimize transactions that were occurring anyway, and to avoid political objections that would have clouded, and even stifled, food shipments of any transparent magnitude. Delinking SADCC trade from South African transport arteries was only ever moderately successful (Ngwenya, 1991). As regards food trade, there was a negligible reversal in the situation whereby, for instance, 400 000 tons were railed to Zambia and Mozambique during 1979–80 (Lipton, 1988a). In the four-year period from 1981–82 to 1985–86, the quantities of agricultural products and foodstuffs imported from and via South Africa into SADCC countries were also considerable: 504 095 tons were railed to Zimbabwe, 473 421 into Mozambique, 451 218 into Botswana and 349 197 into Zambia. Substantial additional volumes were taken by road (Lipton, 1988b). The persistence of such dependencies – coupled with occasional interruptions of food supplies – gave rise to the notion that the apartheid government used food as another tactical weapon to destabilize and keep troublesome neighbours in check (Thompson, 1991); its railway organization's vaunted 'railway diplomacy' (Gibb, 1991) appeared to have another sinister component.

With at least some of the suspicion and distrust removed by political change, South Africa's newly privatized railway corporation (SPOORNET) has assumed the role of senior partner in the distribution of food into southern Africa. Estimates made halfway through the transport project are that 93% of the 11.9 million tons of maize, wheat and other grains for human consumption and animal feed will be directed to and through South Africa. Supplies will be landed by 350 ships principally from the USA and Argentina. Smaller quantities will arrive from Canada, Australia, Mexico and France. Sailing times vary from approximately two weeks ex Buenos Aires, to more than three weeks ex New Orleans.

Vessels in the class of 15 000 tons to 50 000 tons were used for food shipments for the first six months of the project. By the end of the first half of the relief programme, 110 vessels (discharging almost 3 million tons) had been offloaded at Durban (62), East London (20), Cape Town (19) and Port Elizabeth (9). Capacity limitations and cargo-handling restrictions (some grain importers specify that offloading should be mechanical rather than pneumatic) govern harbour selection by the logistics staff. Once landed, grain is transshipped immediately, or is stored in silos prior to being packed into the bags which are preferred by countries such as Malawi where bulk handling facilities are not available, and where road transport is used to import food.

The entire year-long food transport programme is expected to require 6626 SPOORNET trains, each comprising approximately 38 trucks of 39-ton capacity apiece. The organization has dedicated 16 500 rail trucks to the project, 2500 of which have been retrieved from storage and specially refitted as grain wagons. The majority of the food imports through South African ports are destined for domestic use (7.1 million tons), and will occupy most shipments (250 vessels) and transfers (4285 trains). Approximately 85 grain trains are operated each week to distribute food to drought-affected districts in the immediate vicinity of East London and Port Elizabeth, and in the far north and north-west of the Transvaal province. Trains return empty to the harbours for new consignments.

Although they are overshadowed by internal flows, cross-border food transfers from South Africa are substantial. By midway through the grain train project, 699 trains carrying 927 762 tons had been dispatched to the Republic's neighbours. The majority of these trains (419) were routed to Zimbabwe via either Beit Bridge (approximately seven per day) or Mafikeng (approximately four each day). As the South African port that is closest to Zimbabwe, Durban was the origin for most of the cross-border trains (274). East London (173 trains), Port Elizabeth (172) and Cape Town (80) were next in order of importance. By the most direct route, the journey time from Durban to Harare via Mafikeng or Beit Bridge is approximately 4.5 days; from
Durban to Lusaka via Mafikeng the journey is a day longer. Rerouting to avoid congestion or other sources of delay is relatively easy on the dense South African rail network, but is more difficult on the sparse networks of other countries. This constraint will pose increasing logistical difficulties as the time lost at the start of the programme has to be made up: in relation to trips already completed by September 1992, 13 trains will still be needed every week for six months to complete deliveries to Malawi by April 1993. For Zimbabwe and Zambia, the corresponding number of trains is 21 and 19. A period of sustained long-distance transport service lies ahead. Its success will depend in part on whether local road transporters manage to convey supplies from the railheads into the remote, devastated countryside.

The contribution of SPOORNET to the distribution of food relief in southern Africa is complemented by transport organizations working in other designated corridors. The TAZARA rail link west from Dar es Salaam is to transport 550 000 tons of food to areas of need within Tanzania, and 600 000 tons to Zambia over 18 months. In addition, 400 000 tons are destined for delivery to Malawi by road. The TAZARA authority has called for 1000 extra wagons to complete these tasks. Malawi is also fed via Zimbabwe by the Tete road link in Mozambique. The Beira corridor is one easterly supply line to Zimbabwe. During the first six weeks of the drought relief through Beira, 17 000 tons of grain and stockfeed were transported for domestic use in Mozambique. Road and rail transport (five trains every two days) were used to take a further 95 000 tons into Zimbabwe. Four food relief vessels can be accommodated at Beira without interfering with normal harbour activities. The Limpopo railway from Maputo is being used to convey smaller quantities of grain into Zimbabwe: a special army unit of 14 soldiers boards each of two daily trains to protect cargo. The shortage of port facilities at Maputo means that relief shipments there depend on the use of vessels that have their own offloading equipment (Economist Intelligence Unit, Malawi, Mozambique and Zimbabwe Country Reports, No 3, 1992). In Namibia, the railway north from Walvis Bay is used to convey food to Tsumeb for onward transport by road into southern Angola: halfway through the food relief project, six vessels had unloaded 83 049 tons.

Conclusion

It is an old adage that the function of transport is to move commodities from places where they are to destinations where they are required. In areas of privilege and plenty where freight traffic also comprises items of conspicuous consumption, the task of transport has come to include rushing luxuries and playthings to localities where they are most wanted. Elsewhere, in situations of abject poverty and hunger, transport serves to move basic necessities to places where they are truly needed.

In sub-Saharan Africa, transport has not contributed to enhanced food production and circulation at all times and in all districts. At various moments in history, and in various regions, it has failed to serve local farmers and food markets. Counterbalancing this unfortunate record is the humanitarian role that intermodal transport is presently performing in the distribution of food aid throughout a sub-continent ravaged by drought, warfare and population displacement.

In both the Horn of Africa and southern Africa, relief of hunger is the most immediate goal of the food ferries. Both the massive transport projects have the potential to yield other benefits. The transport facilities that have been arranged and installed, and the management lessons that have been learned, should be useful for more than just short-term material survival, or some future emergency. They should help to combat sub-Saharan Africa’s environmental and institutional vulnerability to drought. The temporary transport arrangements should become a foundation for long-term infrastructural development, a catalyst for building entrepreneurial talent in the transport sector, and a device for achieving regional cooperation in transport. In southern Africa, the participation of representatives from world bodies, national transport ministries, agricultural boards and supra-regional organizations in the strategic control and day-to-day supervision of food transport, expresses a unity of purpose that transcends previous political antagonism. Such exercises may provoke cooperation in other spheres. In this fashion, transport projects that were initially intended as stopgaps may ultimately underwrite broader developmental objectives. Transport for daily survival translates into transport for long-term survival.

Acknowledgements

Jacques Pienaar, SPOORNET Media Liaison Officer, and members of the Grain Operations Control Centre in Johannesburg, kindly supplied data about contemporary food aid transport in South Africa and Namibia.

References

World Food Program (1990) 1990 Food aid review, Rome: World Food Program
